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in cases where a wide difference in signal amplitudes

exists [305 ]. They use a Serrodyne technique to trans-

late both signals to audio, where wide differences in level

can readily be handled. Another analysis compares

phase-shift mismatch errors for several choices of ref-

erence wave [306]. Hu has extended the modulated di-

pole scatterer method for measuring electric field to the

case of a modulated loop scatterer for measuring mag-

netic field [307 ]. Other devices include a calorimeter

with an absorptive harmonic filter for multimode power

measurements [308 ], and a bridge-type impedance

meter [309 ].
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Several new techniques have appeared for measuring

specific devices or material characteristics. In the

Doppler method for measuring back scatter, the sample

(in this case absorber) is nutated by means of counter-

rotating eccentric disks in a ground plane [310], This

imparts an audio modulation to the scattered return,

thereby allowing greater suppression of extraneous sig-

nals. .4 nanosecond-pulse radar has been useful in

identifying internal reflections of TWT’S [311 ]. Several

papers relate to excess carrier lifetime in semiconductor

materials [312 ]– [314]. The technique (see Section IV-

C) uses a section of waveguide filled with the material;

incident light pulses create excess carriers whose life-

time is determined from measurements of the micro-

wave power absorption through the sample.
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Summary-An analytic method is given which allows the design
engineer to assess rapidly the short pulse characteristics of any given
tapered-transmission-line type of pulse transformer. The method

allows inclusion of both skin-effect losses and losses which are inde-
pendent of frequency. The effects of mismatching at either end are

shown to be as important as the taper function of the line itself. The

results of this approximate method are expressed as simple integrals

and matching terms to wKlch it is easy to attach physical significance.

The method is applied to the analysis of two tapered-line pulse
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Ally

transformers which are geometrically

IRE

uniform coaxial structures
with tapered dielectric constants. The line whose nominal character-

istic impedance is an exponential function of electrical position is

shown to have a good rise time and tilt distortion characteristics.

l~TRODC~CTION

I

N the already extensive literature on the tapered-

transmission-line pulse transformer,l there has been

little investigation qf the pulse-distorting effects of

losses in the tapered line. That such distortions must

exist is evident, for even the 10SSY uniform line can be

1 H. Kaufman, “Bibliography of nonuniform transmission lines, ”
IRE ‘rRANS. ON .\NTENNAS AND PROPAGATION (Communication), vol.
AP-3, pp. 218-220; October, 1955.



7961 Stapelfeldt and Young: The Short Pulse Behavior of Lossy Tapered Transmission Lines 291

demonstrated to produce distortion if terminated in a

pure resistance. The so-called “initial slope” distortion

of the tapered transmission line which results from the

high-pass nature of the ideal device would be expected

to be changed to a band-pass characteristic by skin ef-

fect. .A band-pass filter would, in turn, be expected to

lengthen the rise time of a short pulse passing through

it. This paper will concern itself with an investigatiol~

of the role of losses—primarily skin-effect losses—ill

lengthening the rise time and otherwise distorting the

waveform of a short pulse undergoing impedance trans-

formation by a tapered-transmission-fine pulse trans-

former. Analytical expressions are found which relate

pulse waveform distortion to the parameters of the line

and to the degree of matching achieved at each end of

the line. These expressions do not include the effects

of multiple reflections from the ends of the line, since the

effects of such additional reflections do not manifest

themselves until long after the passage of pulses of

practically usable length.

The problem of skin effect in the uniform transmis-

sion line has already been considered by I?61issier. z He

has shown that skin effect can be introduced by adding

a series impedance term which is proportional to the

square root of frequency. The real part of this inlped-

ance is the familiar skin resistance.

The analysis is made by first introducing skin effect

into the telegraph differential equations and Laplace

transforming them with respect to time. A series solu-

tion for the voltage e on the 10SSY tapered transmission

line is developed. A similar series technique is then used

to find the impedance Z of the line. The boundary con-

ditions at the generator and load ends of the tapered

line are introduced through the use of transfer func-

tions similar to the transmission coefficients of conven-

tional uniform line analysis. An over-all transfer func-

tion which contains integrals of the taperecl line’s

parameters over distance x is then developed as a func-

tion of s. The inverse Laplace transformation is ex-

amined for the case of a step function generator input

and used to write down relatively silnple expressions

for the rise time, tilt, time delay and voltage nlultiplica-

tion ratio of the arbitrarily tapered 10SSY transmission-

line pulse transformer driven through and terminated

in arbitrary generator and load resistances. “f’hese rise

time and tilt distortions are illustrated in Figs. 1 and 2

for the case of a voltage step function applied to the inp-

ut of the tapered line.

THE .bLU,I”SIS

The starting point of the analysis is the pair of gem

eralized telegraph equations Laplace transformed with

respect to time.

~ = — i [Z~~,i~.] , (1)

z R. P41issier, “La propagation des ondes t;ansitoires et p4riodi-
ques le long des lignes 61ectriques, ” Reu. Gin. Elec., VO1. 59, Pp. 379–
399, September, 1950; pp. 437–454, October, 1950; pp. 502–512,
hTo~-ember, 1950.
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Fig. 1—Skin effect induced rounding of leading edge of
pulse on a tapered transmission line.
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Fig. 2—’~he same pulse as in Fig. 1, on a greatly
contracted time scale.

where

de
2=—)

al”

11 = — e[r~t,,,nt ,

where

ai

;=—.

8X

“rhe series impedance per unit length Zl,~ri~, can be

expressed after Laplace transformation with respect to

time as ls+p<s+Y. The coefficients 1, p and r are vari-

ables with respect to position x only and correspond re-

spectively to the series inductance per unit length, skin

effect coefficient per unit length, and the dc resistance

per unit length. The complex skin effect impedance per

unit length p<~ is an exact representation only for the

case of plane conductors, but it can be demonstrated

that the error introduced in applying this approximation

to conductors \vith other geometries has a negligible ef-

fect On the accuracy of the total Z~.ri.& term when the

final results of the analysis are considered.

The shunt admittance per unit length F.h.,,t is given

as the conventional cs+g with both c and g being vari-

ables with respect to position only.

Solving the two telegraph equations simultaneously,

one obtains a differential equation in voltage.

(

(Pc)s’+ (2p/c) s’/’+ (2rk+p’c+gl’)s’+ (2r’pc-E2pgl)s’/’

)
Ie

+ (?’%+ 2Ygl+p’g)s+ (2t’gp).s’/’+ (?”g)

+(is + )V;+))t– (ls+p<l+r)e==o. (.3)
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A solution to this equation is assumed of the form: This Riccati equation can be solved by- the same tech-

nique used to solve (5).
e(x)

—= e—re(~,s). (4) z = f, + +2s–1/’ +f3s–’ + . . . . (13)
e(0) —

The substitution of (4) into the differential equation
d

f,=m + (14)

in voltage yields a Riccati equation in r,.

(15)

= (J’c)$’+ (2pk)s5/’+ (Z?’;c+p’c+gz’)s’

()
f, = ~ ~ – ~ + 10ss terms.

-lClc
(16)

+ (2?’pc+ 2pgJ).s’/’+ (#c+ 2rgt+p’g)s+ (27gp)s’/’+g’g. (5)

It is not necessary to assume such a simple power series
Since this type of equation cannot be solved in closed solution for Z, should a different form of solution be de-

form, a series solution is found by assumption of a sired. If the following series is chosen:
series expansion of ~, in decreasing powers of S112.This

form of asymptotic series expansion has been described

by Weber and others.’
d

~ = ~ A ,+,s-’/’++,8-’++ 8s-3/’+ . . . (17)
c

i. = bls + b,s’fz + b, + b4s–1/J + b,s–l + . . . . (6)

The b coefficients of this series are evaluated after the

insertion of the series representation of ~, into (5) by a

recursion process. The coefficients of the terms in the

highest power of s present are equated to evaluate b,.

Then the terms in the next higher power of s are used

together with bl to evaluate b~. This process, when con-

tinued, will evaluate the b coefficients in sequence.

There are two independent sets of valid b coefficients

corresponding to m = + 1 and m = – 1.

bl = m~~, (7)

, /7
(8]

b2=m TK:

Ii”

()
bs=–~ #

‘m(+’;:++gd:-:? d:)(’)

b~ = all loss terms containing p, r and g, (lo)

{

7i~ 5 c’

1 l%:-;)}
b5=~r —–— —–—

d lc 3212 32 c’ 161c

plus loss terms. (11)

An expression for the impedance of the 10SSY tapered

transmission line Z = e/i is found by our differentiating

the defining equation for Z and inserting the values of

& and ;from (1) and (2).

Z=(cs+g)z’ –ls–pv; –?’. (12)

a E. Weber, “Linear Transient Analysis—Volume I I,” John
Wiley and Sons, Inc., New York, N. Y., Section 7.4; 1956.

another valid series representation of the high-fre-

quency behavior of Z is obtained. In this case, the ex-

ponential must be expanded before evaluation of the ~

coefficients, which are:

(18)

()~,=z+ + loss terms.
441C

(19)
c

The index m = f 1 in the series solutions for e and Z

results from the existence of two mathematically inde-

pendent solutions which are interpreted physically as

the voltages and impedances associated with a wave

moving in the plus-v direction for m == + 1 and with a

wave moving in the reverse direction for m = — 1.

For a complete solution, it is necessary to introduce

the boundary conditions for the tapered transmission

line at both ends of the line—at x = O where the line is

driven by a generator with a source resistance 1?. and

at x ==X where the line is terminated in a load resistance

R~.-~he method chosen for this is that of solving for a

transmission coefficient or transfer function at each end

of the line. Each transfer function is then considered as

a ‘(matching term” independent of the transmission

characteristics of the tapered line proper.

The transfer function at the input is defined as:

l?(o)
— == @s-1’2+918-’+. . . . (20)

eg

where

(21)

the infinite frequency transfer function at the input.
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The g coefficients are evaluated by simple circuit tapered-transmission-line pulse transformer to be ex-

theory using the Z previously found and evaluating it at pressed comparatively simply.

x = O with m = + 1 to obtain the input impedance of the

line. eL :(()) :(X) eL

Similarly, the transfer function at the output is de-
—. — —.— ._. (24)

eU
fined as

“ -20) 7(X)

The three transfer functions making up the over-all

eL
— = ~ckos ‘1 f2+h1X–-+ .

transfer function are multiplied together 13y simply

(22) adding up terms in the arguments of the exponential.
2(X)

By use of the relationship that

where

2
ii– —

exp {--+-~x(~-~)dx} = {%: (25)

41/c \.=x ‘
1+ (23)

the over-all transfer function for the tapered-line pulse

R~ transformer becomes

the infinite frequency transfer function at the output. d~l.=x
The choice of transfer functions containing power ~

d
= VX ~— e@+@’’’2+ ~3+f41-2+f5s51+1+ “ , (26)

@/c I.=o
series in the arguments of the exponential is a useful

one since it allows the over-all transfer function of the where

(27)

(28)

(29)

(30)

(31)
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If a step function EMF is applied at the generator,

the load voltage can be found by using eL/e*. In this

case, a physical interpretation can be assigned to each

of the factors of eL/eq by consideration of each factor as

a filter acting successively on the input step function.

is a distortionless multiplying factor

representing the nominal voltage

transformation ratio of the tapered

line and its matching as would be pre-

dicted from lossless uniform line

theory.

represents a distortionless delay of

–& seconds.

represents the rounding of the lead-

ing edge of the step function. The

shape of this curve is shown in Fig. 1.

represents a distortionless attenua-

tion due to losses in the line,

represents a completely negligible

modification of the delayed, atten-

uated and rounded-off step function

(see below).

represents the tilt or “initial slope”

distortion discussed by Frank4 and

Young.b The exact inverse Laplace

transformation of this term has the

form:

,h extremely good approximation to

this is the straight line:

e(l) = 1 + &5t’.

The previous discussion has implied that the inverse

Laplace transformation of the response of cascaded

filters can be found by our multiplying together the

time responses of the individual filters. In the general

case, this is obviously incorrect and real convolution of

the factors is needed. Direct multiplication of the time

responses is justified only when only one factor of the

complex frequency response is appreciably different

from unity at a given complex frequency. This is the

case here since the spectral aberration corresponding

to the skin-effect-induced rounding of the leading edge

4 I. A. D. Lewis and F. H. Wells, l’Millimicrosecond Pulse Tech-
niques, ” Pergamon Press, Ltd., London, England, pp. 63-93; 1954.

K F. J. Young, E. R. Schatz, and J. B. Woodford, “The optimum
transmission-line pulse transformer, ” T~ans. A IEE, vol. 79, pp.
220–223 ; July, 1959.

of the step function occurs at frequencies which are

orders of magnitude higher than those frequency re-

sponse distortions determining the relatively slow tilt

of the top of the step function.

The ef,s-”2 term has a value which approaches unity

with increasing frequency (t~O). At the frequencies in-

volved in the spectra of the pulses considered here, this

term can still be neglected because it is very close to

unity and moreover is essentially divergent, The di-

vergent nature of this term can be demonstrated clearly

in the case of the uniform line with skin effect, in which

case the contribution of this term leads to physically

erroneous results. This explains why in the literature

only the e$’ ‘1’2 term is used in computing skin effect. 2

GENERAL RESULTS

Other simplifications in the mathematics result when

the loss terms of (26) are considered. It can be demon-

strated that the presence of p in all terms past the $z

term results from the divergent nature of the asymp-

totic series developed for e. Many of the other terms

likewise become negligible for practical tapered-line

pulse transformers.

On the basis of the preceding analysis, it is possible

to write down simplified expressions of each important

modification a unit step function EMF will undergo in

passing through a tapered-line pulse transformer. These

expressions will be valid for the duration of short pulses

of usually acceptable distortion.

Time Delay

As would be expected, this delay is determined by the

electrical length of the line and the speed of light.

sx
Time delay = <~dx (seconds). (32)

o

l’oltagc Transformation

As defined here, this ratio relates the load voltage

amplitude to the generator EMF and includes not only

the impedance changing effect of the tapered line but

also the effects of matching at each end of the line.

———

‘d~ l.=.

iVoltage transformation ratio = @ ~ ———
. 41/G [.=”

The input and output matching terms defined in (21)

and (23) are ~ and A. The attenuation due to r is com-

pletely negligible for practical pulse transformers con-

structed of self-supporting metal conductors. The atten-

uation due to g will usually contribute attenuation of

no more than a few per cent.
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Lengthming of Rise Time

Fig. 1 sho~vs the skin-effect-induced distortion of the

voltage response to a unit step function input. The rise

time of this response will be conventionally defined here

as the time it takes the voltage response to rise from 10

per cent to 90 per cent of its final value.

Rise time = 31.-l5&’ (seconds), (34)

n-hw-e

(35)

Tilt

The tilt is defined as the normalized slope of the early

portion of the load voltage response to a step function

input at the generator (see Fig. 2). The tilt depends On

both the manner in which the transmission line is ta-

pered and the degree of matching attained at each end

of the line.

(volts

)
Tilt = gb ;O= per second

The four expressions just derived for time delay, volt-

age transformation ratio, rise time and tilt represent the

simplified results of the analysis. They are valid for the

duration of short pulses of usually acceptable distor-

tion. For the special case of constant velocity of propa-

gation or the even more special case of the exponential

line where the flare constant ~ = i/1= – tijc, the four ex-

pressions will simplify greatly,

EXAMPLES OF Two COAXIAL LINES WITH VARIABLE

VELOCITY OF PROPAGATION

The type of coaxial tapered line chosen for these ex-

amples is somewhat unusual in that it is assumed to be

constructed of a 20-foot length of rigid &ir~ch copper

water pipe and a 20-foot length of no. 25 cctpper wire.

The impedance tapering is accomplished by tapering of

the dielectric constant of the dielectric material rather

th:u] by variation of the conductor geometry. For the

4-to- 1 impedance transformation ratio chosen for these

examples, it is necessary to change the dielectric con-

stant over a 16-to-l range. One way of doing this would

be to mix heavily aerated plastic and powdered sintered

barium strontium titanate in differing proportions as

the line is filled from one end.

Two dielectric constant taper functions will be corr-

sidered so as to illustrate the effect of taper function on

the over-all characteristics of the tapered-line pulse

transformer. Each line will be designed to match nom-

inally a 50-ohm generator and a 200-ohm load.

The first taper analyzed will be produced by having

the dielectric constant vary linearly with physical posi-

tion from e’=1.26 to c’=20.1.

The second taper analyzed will also have e’ vary be-

tween 1.26 and 20.1, but in such a manner that the

nominal characteristic impedance of the line will vary

exponentially with electrical position. A wavefron t

propagating along this line will see a change in 41/c

with time identical to that seen by a wavefront travel-

ing along a true exponential line of the same electrical

length. Since the velocity of propagation varies with

position, the line will not be exponential with respect to

physical position and will therefore be called “electri-

cally exponential. ”

For both lines, the constant geometry irrrplies a con-

stant 1 and p. Only c and g will vary with position. Di-

electric loss is considered proportional to dielectric con-

stant and corresponds to a 1OO-MC power factor of 0.1

per cent.

The response of each of the tapered lines to a unit

step function generator EM F is determined by use of

the simplified expressions (32)–(36). The results are

given in Tables I–III (pp. 295 and 296).

TABLE 1

I’ARAMETERS OF THE ‘hO LINES

-.

I farads per meter I mhos per meter I ohms

50
Linear taper of dielectric constant 2.99 .lO-’’(l–O .1539x) t .881 O-’(l– O.1539X)

V’1–o 1539X

10–?3 6.283. 10-~
Electrically exponential line 21.58( x-E2.032)

(2.810x+5.78)2 (2.8AOx+5.78)~
——. —



296 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES July

TABLE II

RESULTS OF THE ANALYSIS

V&::
Delay

Rise Tilt

formation
Time (see-’)

Linear taper of di-
electric constant 60.6 nsec I 0.980 I0.67 nsec –4.7.107

Electrically expo-
nential line I42.2 nsec 0.987 I0.29 nsec –4.810s

It is interesting to note the individual contributions

of the three terms making up the tilt term. From (36),

‘i’t=(s:!g)+(:a+(i=o
TABLE III

TILT TABULATION

Sending End Load End Integral Total
Term Term Terms Tilt

Linear taper of di-
electric constant +1.28.106 –8.33.107 +3 .52.10’ –4.7.107

Electrically expo-
nential line +8.21.10’ –8.2110’ –4.8.108 –4.8. IOG

The negative tilt is about an order of magnitude less

for the nominally matched electrically exponential line

than for the nominally matched line with a linear taper

of dielectric constant. This is a result of the matching

conditions since, as Table I I I indicates, the linearly-

tapered line by itself contributes a positive tilt.

CONCLUSIONS

This investigation has been aimed at examining the

role of skin effect in the tapered-line pulse transformer.

The approximate mathematical method adopted has

fortunately turned out to be general enough also to pre-

dict pulse response for time durations very much longer

than the duration of the rise phenomenon alone. This

has permitted a check with the pulse distortion expres-

sions determined by other investigators for the loss-

less case. The method can be useful to the design en-

gineer in predicting the entire useful response to a short

pulse undergoing impedance transformation on a

tapered-transmission-line pulse transformer.

‘As
1)

2)

a result of this analysis, it can be concluded that:

The rise time of a tapered transmission line is not

materially affected by resistive mismatching at

either end of the line.

The “initial slope” or tilt of the response to a step

function can b; adjusted over a large range—in-

cluding both negative and positive values—de-

pending on the taper function of the line and the

generator and load resistances.

This latter conclusion seems to bear out previous con-

tentions that any ‘(optimum” taper would have to be a

function of the load and generator impedances.s


