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in cases where a wide difference in signal amplitudes
exists [305]. They use a Serrodyne technique to trans-
late both signals to audio, where wide differences in level
can readily be handled. Another analvsis compares
phase-shift mismatch errors for several choices of ref-
erence wave [306]. Hu has extended the modulated di-
pole scatterer method for measuring electric field to the
case of a modulated loop scatterer for measuring mag-
netic field [307]. Other devices include a calorimeter
with an absorptive harmonic filter for multimode power
measurements [308], and a bridge-type impedance
meter [309].

(303] J. K. Hunton, “Analysis of microwave measurement tech-
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206-212; March, 1960.

[304] D. S. Lerner and H. A. Wheeler, “Measurement of bandwidth
of microwave resonator by phase shift of signal modulation,”
IRE TraNs. oN MicROWAVE THEORY AND TECHNIQUES, vol.
MTT-8, pp. 343-345; May, 1960.

[305] C. A. Finnila, et al., “Measurement of relative phase shift at
microwave frequencies,” IRE TrANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol, MTT-8, pp. 143-147; March, 1960.

[306] G. E. Schafer, “Mismatch errors in microwave phase shift
measurements,” IRE TraNs, oN MicrowavE THEORY AND
TECHNIQUES, vol. MTT-8, pp. 617-622; November, 1960.

[307] M.-K. Hu, “On measurements of microwave E and H ﬁeld dis-
tributions by using modulated scattering methods,” IRE
Trans. oN MicrowavE THEORY AND TECH\IIQUES vol.
MTT-8, pp. 295-300; May, 1960.

[308] V. G. Price, “Harmonic calorimeter for power measurements
in a multimode waveguide,” 1960 IRE INTERNATIONAL CON-
VENTION RECORD, pt. 3, pp. 136-144.

[309] R. W, Beatty, “A microwave impedance meter capable of high
accuracy,” IRE Trans. oN MicrowavE THEORY AND TECH-
NIQUES (Correspondence), vol. MTT-8, pp. 461-463; July,
1960.

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

July

Several new techniques have appeared for measuring
specific devices or material characteristics. In the
Doppler method for measuring back scatter, the sample
(in this case absorber) is nutated by means of counter-
rotating eccentric disks in a ground plane [310]. This
imparts an audio modulation to the scattered return,
thereby allowing greater suppression of extraneous sig-
nals. A nanosecond-pulse radar has been useful in
identifying internal reflections of TWT’s [311]. Several
papers relate to excess carrier lifetime in semiconductor
materials [312]-{314]. The technique (see Section IV-
C) uses a section of waveguide filled with the material;
incident light pulses create excess carriers whose life-
time is determined from measurements of the micro-
wave power absorption through the sample.
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The Short Pulse Behavior of Lossy
Tapered Transmission Lines”

R. STAPELFELDTY, MEMBER, IRE, AND F. J. YOUNGT, MEMBER, IRE

Summary—An analytic method is given which allows the design
engineer to assess rapidly the short pulse characteristics of any given
tapered-transmission-line type of pulse transformer. The method
allows inclusion of both skin-effect losses and losses which are inde-
pendent of frequency. The effects of mismatching at either end are
shown to be as important as the taper function of the line itself. The
results of this approximate method are expressed as simple integrals
and matching terms to which it is easy to attach physical significance.

The method is applied to the analysis of two tapered-line pulse

* Received by the PGMTT, December 6, 1960; revised manu-
script received, March 15, 1961. This research was supported in part
by the Office of Naval Research under Contract NONR 760(09).
This paper is abstracted from a dissertation submitted by R. Stapel-
feldt in partial fulfillment of the requirements for the Ph.D. degree
at Carnegie Institute of Technology.

1 Carnegie Institute of Technology, Pittsburgh, Pa.

transformers which are geometrically uniform coaxial structures
with tapered dielectric constants. The line whose nominal character-
istic impedance is an exponential function of electrical position is
shown to have a good rise time and tilt distortion characteristics.

INTRODUCTION

N the already extensive literature on the tapered-
J:[ transmission-line pulse transformer,! there has been
little investigation of the pulse-distorting effects of
losses in the tapered line. That such distortions must
exist is evident, for even the lossy uniform line can be

! H. Kaufman, “Bibliography of nonuniform transmission lines,”
IRE TRANS. ON ANTENNAS AND PropaGaTIoN (Communication), vol.
AP-3, pp. 218-220; October, 1955.



1961

demonstrated to produce distortion if terminated in a
pure resistance. The so-called “initial slope” distortion
of the tapered transmission line which results from the
high-pass nature of the ideal device would be expected
to be changed to a band-pass characteristic by skin ef-
fect. A band-pass filter would, in turn, be expected to
lengthen the rise time of a short pulse passing through
it. This paper will concern itself with an investigation
of the role of losses—primarily skin-effect losses—in
lengthening the rise time and otherwise distorting the
waveform of a short pulse undergoing impedance trans-
formation by a tapered-transmission-line pulse trans-
former. Analytical expressions are found which relate
pulse waveform distortion to the parameters of the line
and to the degree of matching achieved at each end of
the line. These expressions do not include the effects
of multiple reflections from the ends of the line, since the
effects of such additional reflections do not manifest
themselves until long after the passage of pulses of
practically usable length.

The problem of skin effect in the uniform transmis-
sion line has already been considered by Pélissier.? He
has shown that skin effect can be introduced by adding
a series impedance term which is proportional to the
square root of frequency. The real part of this imped-
ance is the familiar skin resistance.

The analysis is made by first introducing skin effect
into the telegraph differential equations and Laplace
transtorming them with respect to time. A series solu-
tion for the voltage e on the lossv tapered transmission
line is developed. A similar series technique is then used
to find the impedance Z of the line. The boundary con-
ditions at the generator and load ends of the tapered
line are introduced through the use of transfer func-
tions similar to the transmission coefficients of conven-
tional uniform line analysis. An over-all transfer func-
tion which contains integrals of the tapered line's
parameters over distance x is then developed as a func-
tion of s. The inverse Laplace transformation is ex-
amined for the case of a step function generator input
and used to write down relatively simple expressions
for the rise time, tilt, time delay and voltage multiplica-
tion ratio of the arbitrarily tapered lossy transmission-
line pulse transformer driven through and terminated
in arbitrary generator and load resistances. These rise
time and tilt distortions are illustrated in Figs. 1 and 2
for the case of a voltage step function applied to the in-
put of the tapered line.

THE ANALYSIS
The starting point of the analysis is the pair of gen-
eralized telegraph equations Laplace transformed with
respect to time,
- i[Zserice], (1)

é:

2 R. Pélissier, “La propagation des ondes transitoires et périodi-
ques le long des lignes électriques,” Rev. Gén. Elec., vol. 59, pp. 379~
399, September, 1950; pp. 437-454, October, 1950; pp. 502-512,
November, 1950.
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Fig. 1—Skin etfect induced rounding of leading edge of
pulse on a tapered transmission line.
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Fig. 2—The same pulse as in Fig. 1, on a greatly
contracted time scale.
where
i de
e =
ox
1= — 3|_Yshunlj, (2)
where
. 0i
;=
dx

The series impedance per unit length Z, . can be
expressed after Laplace transformation with respect to
time as Is-++p+/S+7. The coefficients , p and » are vari-
ables with respect to position x only and correspond re-
spectively to the series inductance per unit length, skin
effect coefficient per unit length, and the dc resistance
per unit length. The complex skin effect impedance per
unit length p+/S'is an exact representation only for the
case of plane conductors, but it can be demonstrated
that the error introduced in applying this approximation
to conductors with other geometries has a negligible ef-
fect on the accuracy of the total Zsries term when the
final results of the analysis are considered.

The shunt admittance per unit length Vipuus is given
as the conventional ¢s+g with both ¢ and g being vari-
ables with respect to position only,

Solving the two telegraph equations simultaneously,
one obtains a differential equation in voltage.

<(l‘zc)s3—l— (2plc)s® 4= (2ric+pPc+gl?) s>+ Q2rpc+ 2pg1)53/2>
)

+ (% 2rgi4-p*g) s+ (2rgp) s 1124 (r2g) ¢

+ (s 4+ pv/sHNé—(Is+py/s+1)E=0.  (3)
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A solution to this equation is assumed of the form:
e(x)
e(0)

The substitution of (4) into the differential equation
in voltage yields a Riccati equation in T..

= TG (4)

(st ov/s+N) T2+ (s +pv/s+H) T — (s+pv/s+0) T,
= ({2¢) s34+ (2plc) 5312 (2rlc+ pPc - gl*) s?
+ Qrpc+2pgl)s?2+ (rPc+2rgl+p’g) s+ (2rgp)st2+r2g. (5)

Since this type of equation cannot be solved in closed
form, a series solution is found by assumption of a
series expansion of T', in decreasing powers of s2, This
form of asymptotic series expansion has been described
by Weber and others.®

Po = bis + basM? 4 by -+ bus 2 F bys™ 1+ - - - . (6)

The b coefficients of this series are evaluated after the
insertion of the series representation of T', into (5) by a
recursion process. The coefficients of the terms in the
highest power of s present are equated to evaluate b;.
Then the terms in the next higher power of s are used
together with &; to evaluate bs. This process, when con-
tinued, will evaluate the & coefficients in sequence.

There are two independent sets of valid & coefficients
corresponding to m=-4+1 and m=—1.

bl = MX/E-, (7)

c
bg_'m—p* /—7
2 I

) 1<17 c'>

- 4 \/ c
N <1 4/c_le 4/T 1 p?
"\ ! 2 ¢ c 8 1

(8)

Yo

by = all loss terms containing p, r and g, (10)
, m { 702 5 ¢ 1 ¢ 1 (Z’ c)}

PT Ve 322 32 ¢ 16 1 ¢ 8 \I ¢
plus loss terms. (11)

An expression for the impedance of the lossy tapered
transmission line Z =¢/7 is found by our differentiating
the defining equation for Z and inserting the values of
¢ and ¢ from (1) and (2).

Z = (cs+ 972 —Is — pa/s — 7. (12)

3 E. Weber, “Linear Transient Analysis—Volume II,” John
Wiley and Sons, Inc., New York, N. Y., Section 7.4; 1956.
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This Riccati equation can be solved by the same tech-
nique used to solve (5).

Z =1+ fos72 4 faswt - o o (13)
n
¢
m p B
fa = ? Vs (15)
1 /1 ¢
fs= —<—~ - ——> —+ loss terms. (16)
de\/ c

It is not necessary to assume such a simple power series
solution for Z, should a different form of solution be de-
sired. If the following series is chosen:

Il

—1/2 -1 ~3/2, ..

Z=m /‘/—— eb1s Ttdas HeasT Y ,
c

another valid series representation of the high-fre-
quency behavior of Z is obtained. In this case, the ex-
ponential must be expanded before evaluation of the ¢
coefficients, which are:

(17)

0
=, 18
91 2 (18)
_.m" (l' é) + loss ¢ (19)
by = VAV - 0ss terms,

The index m = +1 in the series solutions for ¢ and Z
results from the existence of two mathematically inde-
pendent solutions which are interpreted physically as
the voltages and impedances associated with a wave
moving in the plus-x direction for m =41 and with a
wave moving in the reverse direction for m= —1.

For a complete solution, it is necessary to introduce
the boundary conditions for the tapered transmission
line at both ends of the line—at x =0 where the line is
driven by a generator with a source resistance R, and
at ¥ =X where the line is terminated in a load resistance
Ry. The method chosen for this is that of solving for a
transmission coefficient or transfer function at each end
of the line. Each transfer function is then considered as
a “matching term” independent of the transmission
characteristics of the tapered line proper.

The transfer function at the input is defined as:

(0)
¢ = ﬂeaos*1’2+g1s”+--~? (20)
€q
where
= : (21)
n= 1 B Rg_* ’ ,
\/7/_2:_'2=0

the infinite frequency transfer function at the input.
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The g coefficients are evaluated by simple circuit
theory using the Z previously found and evaluating it at
x=0 with m = +1 to obtain the input impedance of the
line.

Similarly, the transfer function at the output is de-
fined as
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tapered-transmission-line pulse transformer to be ex-
pressed comparatively simply.

o ‘f“’)E(QJL. (24)
G e 0) o(X)

The three transfer functions making up the over-all

er o, - transfer function are multiplied together by simply
= \ehos +hisT . (22) . . A
-~ adding up terms in the arguments of the exponentials.
e(X) By use of the relationship that
h . T S—
where 1 X0 ¢ N
exp{-—wf <~——»— dx ¢ = — (25
) 2 2 1Jy \1I ¢ \/l/c|x=0
1+ \/1/7[1=X (23) the over-all transfer function for the tapered-line pulse
R; transformer becomes
the 1nﬁn1te'frequency transfer fupctlon at t}‘le.output. eL N Vije }z_X ottt ()
The choice of transfer functions containing power . n \/l/c[
series in the arguments of the exponentials is a useful 7 ==
one since it allows the over-all transfer function of the where
X R
£ = — Ve dx, 27
v 0
1 X /7
= -t < i, (29)
RSN
X 1 /e 1 71 p? 4/7}
= — —_ — 4 — _——— — ¢ dx, (29)
& ) {2 N I AN A
1 p ¢ 1o { Vife }3
= — R, 4/ — — — =4
BTy 1/ e+ 1 U R fax
1 X 171 1 ¢ 1 1 e /e
_'-‘f ‘p‘<‘—_‘i_7’/‘//4+g/ - N_“/‘/__>dx) (30)
2Jy N2 1 2 p 2 l 2 8 I !
1/1 ¢ 1 p? /7< 4/7 ) g 1 7 4/7}
=qR—(—— N+ — S g/ (R p — = 1)+ — e — —— )
i "”{41(1 c)—l_SZQ/‘/ AN vie 2 1Vl
N o/l : 1 p? Ve Nz NN WA
Lol TR H - R
8\/[6 ! c 8 ! 2 _RL 2 RL RL 4 RL
7 1 Ve 1 NATA
i )
l 4 Ry 4 ¢ Rz 2=X
X7ll'251c'211l'c‘11<'l' z>5471p2i
oV r RV 163k 1 ¢ 8 Vi ¢/ sV 1 o4
1 256 1 1+ 1 7 I 1 g /I g gé 3 o
LAY SRR T,li 1 aya
4 2 p g I 4 1 4 1 1 8 ¢ c ¢ 4 ¢ 16 2 l
1 1 p? 3 p¥ c
S LS S LS 4/11(”. 31)
1 Vie 16 Wi £ 1S
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If a step function EMF is applied at the generator,
the load voltage can be found by using er/e¢, In this
case, a physical interpretation can be assigned to each
of the factors of ez/e, by consideration of each factor as
a filter acting successively on the input step function.

is a distortionless multiplying factor
representing the nominal voltage
transformation ratio of the tapered
line and its matching as would be pre-
dicted from lossless uniform line
theory.

VI/eox

7 AR

V¢

represents a distortionless delay of
—&; seconds.

eb1s

/ represents the rounding of the lead-

ing edge of the step function. The
shape of this curve is shown in Fig. 1.

55287

et represents a distortionless attenua-

tion due to losses in the line.

chas 1 represents a completely negligible
modification of the delayed, atten-
uated and rounded-off step function
(see below).

represents the tilt or “initial slope”
distortion discussed by Frank! and
Young.® The exact inverse Laplace
transformation of this term has the
form:

ebss !

6(i/) = Jo[Z\/—$5t,].

An extremely good approximation to
this is the straight line:

ety = 14 &t'.

The previous discussion has implied that the inverse
Laplace transformation of the response of cascaded
filters can be found by our multiplying together the
time responses of the individual filters. In the general
case, this is obviously incorrect and real convolution of
the factors is needed. Direct multiplication of the time
responses is justified only when only one factor of the
complex frequency response is appreciably different
from unity at a given complex frequency. This is the
case here since the spectral aberration corresponding
to the skin-effect-induced rounding of the leading edge

. *L A D. Lewis and F. H. Wells, “Millimicrosecond Pulse Tech-
niques,” Pergamon Press, Ltd., London, England, pp. 63-93; 1954,
5F. J. Young, E. R. Schatz, and J. B. Woodford, “The optimum
transmission-line pulse transformer,” Trams. AIEE, vol. 79, pp.
220-223; July, 1959.
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of the step function occurs at frequencies which are
orders of magnitude higher than those frequency re-
sponse distortions determining the relatively slow tilt
of the top of the step function.

The et """ term has a value which approaches unity
with increasing frequency (¢(—0). At the frequencies in-
volved in the spectra of the pulses considered here, this
term can still be neglected because it is very close to
unity and moreover is essentially divergent. The di-
vergent nature of this term can be demonstrated clearly
in the case of the uniform line with skin effect, in which
case the contribution of this term leads to physically
erroneous results. This explains why in the literature
only the e term is used in computing skin effect.?

GENERAL RESULTS

Other simplifications in the mathematics result when
the loss terms of (26) are considered. It can be demon-
strated that the presence of p in all terms past the &,
term results from the divergent nature of the asymp-
totic series developed for e. Many of the other terms
likewise become negligible for practical tapered-line
pulse transformers.

On the basis of the preceding analysis, it is possible
to write down simplified expressions of each important
modification a unit step function EMF will undergo in
passing through a tapered-line pulse transformer. These
expressions will be valid for the duration of short pulses
of usually acceptable distortion.

Time Delay

As would be expected, this delay is determined by the
electrical length of the line and the speed of light.

x
Time delay =f v/ I¢c dx (seconds). (32)
0

Voltage Transformation
As defined here, this ratio relates the load voltage

amplitude to the generator EMF and includes not only

the impedance changing effect of the tapered line but

also the effects of matching at each end of the line.
/—:A“‘
V¢ o

Voltage transformation ratio = g\ ‘/——L.—I—X

" \/l/C lm=0

Y ST S

The input and output matching terms defined in (21)
and (23) are 5 and A. The attenuation due to r is com-
pletely negligible for practical pulse transformers con-
structed of self-supporting metal conductors. The atten-
uation due to g will usually contribute attenuation of
no more than a few per cent.
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Lengthening of Rise Time

Fig. 1 shows the skin-effect-induced distortion of the
voltage response to a unit step function input. The rise
time of this response will be conventionally defined here
as the time it takes the voltage response to rise from 10
per cent to 90 per cent of its final value.

Rise time = 31.45£% (seconds), (34)

where

(35)

by ey
2 = 2 0P lx'
Tt

The tilt is defined as the normalized slope of the early
portion of the load voltage response to a step function
input at the generator (see Fig. 2). The tilt depends on
both the manner in which the transmission line is ta-
pered and the degree of matching attained at each end
of the line.

volts
Tilt = & <~~A per second>
volts
171 ¢ A/ ¢
e s
47 \ ] ¢ =0 8VIc \I ¢/ lo—x
fX; 1 <7 s &t lo¢
o WWie\32 2 322 161 ¢
1 ! ¢ g g 1
-}t - — — dx 36
8 <l c>> 4 c cj (36)

The four expressions just derived for time delay, volt-
age transformation ratio, rise time and tilt represent the
simplified results of the analysis. They are valid for the
duration of short pulses of usually acceptable distor-
tion. For the special case of constant velocity of propa-
gation or the even more special case of the exponential
line where the flare constant «y =i/l = —¢/¢, the four ex-
pressions will simplify greatly.
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ExaMpLES OF Two CoAxiAL LiNES WITH VARIABLE
VELOCITY OF PROPAGATION

The type of coaxial tapered line chosen for these ex-
amples is somewhat unusual in that it is assumed to be
constructed of a 20-foot length of rigid 2-inch copper
water pipe and a 20-foot length of no. 25 copper wire.
The impedance tapering is accomplished by tapering of
the dielectric constant of the dielectric material rather
than by variation of the conductor geometry. For the
4-to-1 impedance transformation ratio chosen for these
examples, it is necessary to change the dielectric con-
stant over a 16-to-1 range. One way of doing this would
be to mix heavily aerated plastic and powdered sintered
barium strontium titanate in differing proportions as
the line is filled from one end.

Two dielectric constant taper functions will be con-
sidered so as to illustrate the effect of taper function on
the over-all characteristics of the tapered-line pulse
transformer. Each line will be designed to match nom-
inally a 50-ohm generator and a 200-ohm load.

The first taper analyzed will be produced by having
the dielectric constant vary linearly with physical posi-
tion from ¢ =1.26 to ¢ =20.1.

The second taper analyzed will also have ¢ vary be-
tween 1.26 and 20.1, but in such a manner that the
nominal characteristic impedance of the line will vary
exponentially with electrical position. A wavefront
propagating along this line will see a change in V/I/¢
with time identical to that seen by a wavefront travel-
ing along a true exponential line of the same electrical
length. Since the velocity of propagation varies with
position, the line will not be exponential with respect to
physical position and will therefore be called “electri-
cally exponential.”

For both lines, the constant geometry implies a con-
stant / and p. Only ¢ and g will vary with position. Di-
electric loss is considered proportional to dielectric con-
stant and corresponds to a 100-Mc power factor of 0.1
per cent,

The response of each of the tapered lines to a unit
step function generator EMF is determined by use of
the simplified expressions (32)—(36). The results are
given in Tables I-111 (pp. 295 and 296).

TABLE [
PArRAMETERS OF THE Two LiNES

¢ g Vijc
farads per meter mhos per meter ohms
50
Linear taper of dielectric constant 2.99-1071%(1—0.1539x) 1.88-104(1—0.1539x) By ——
Vv1—=0.1539%

108

Electrically exponential line e
(2.840x+5.78)?

6.283-107%

. X .
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TABLE II
RESULTS OF THE ANALYSIS

Voltage Rise Tilt

July

formation

Delay Trans- Time (sec)

Linear taper of di-
electric constant | 60.6 nsec

Electrically expo-

nential line 42 .2 nsec

0.980 0.67nsec | —4.7-107

0.987 0.29 nsec | —4.8-10°

It is interesting to note the individual contributions
of the three terms making up the tilt term. From (36),

sending load integral
tilt = end +1 end |+ torms
term term
TABLE 111

Tiur TABULATION

Sending End
Term

Load End

Integral Total
Term Terms Tilt

Linear taper of di-
electric constant | -+1.28-10¢

Electrically expo-

nential line +8.21-108

—8.33-107| +3.52-107 | —4.7-107

—8.21-10%| —4.8-10% | —4.8-10¢

The negative tilt is about an order of magnitude less
for the nominally matched electrically exponential line
than for the nominally matched line with a linear taper
of dielectric constant. This is a result of the matching
conditions since, as Table III indicates, the linearly-
tapered line by itself contributes a positive tilt.

CONCLUSIONS

This investigation has been aimed at examining the
role of skin effect in the tapered-line pulse transformer.
The approximate mathematical method adopted has
fortunately turned out to be general enough also to pre-
dict pulse response for time durations very much longer
than the duration of the rise phenomenon alone. This
has permitted a check with the pulse distortion expres-
sions determined by other investigators for the loss-

less case. The method can be useful to the design en-
gineer in predicting the entire useful response to a short
pulse undergoing impedance transformation on a
tapered-transmission-line pulse transformer.

As a result of this analysis, it can be concluded that:

1) The rise time of a tapered transmission line is not
materially affected by resistive mismatching at
either end of the line.

2) The “initial slope” or tilt of the response to a step
function can be adjusted over a large range-—in-
cluding both negative and positive values—de-
pending on the taper function of the line and the
generator and load resistances.

This latter conclusion seems to bear out previous con-
tentions that any “optimum?” taper would have to be a
function of the load and generator impedances.®




